Algorithms on Ideal over Complex Multiplication order
نویسنده
چکیده
We show in this paper that the Gentry-Szydlo algorithm for cyclotomic orders, previously revisited by Lenstra-Silverberg, can be extended to complex-multiplication (CM) orders, and even to a more general structure. This algorithm allows to test equality over the polarized ideal class group, and finds a generator of the polarized ideal in polynomial time. Also, the algorithm allows to solve the norm equation over CM orders and the recent reduction of principal ideals to the real suborder can also be performed in polynomial time. Furthermore, we can also compute in polynomial time a unit of an order of any number field given a (not very precise) approximation of it. Our description of the Gentry-Szydlo algorithm is different from the original and LenstraSilverberg’s variant and we hope the simplifications made will allow a deeper understanding. Finally, we show that the well-known speed-up for enumeration and sieve algorithms for ideal lattices over power of two cyclotomics can be generalized to any number field with many roots of unity.
منابع مشابه
MULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملA New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure
The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...
متن کاملTwo efficient algorithms for the computation of ideal sums in quadratic orders
This paper deals with two different asymptotically fast algorithms for the computation of ideal sums in quadratic orders. If the class number of the quadratic number field is equal to 1, these algorithms can be used to calculate the GCD in the quadratic order. We show that the calculation of an ideal sum in a fixed quadratic order can be done as fast as in Z up to a constant factor, i.e., in O(...
متن کاملON COMULTIPLICATION AND R-MULTIPLICATION MODULES
We state several conditions under which comultiplication and weak comultiplication modulesare cyclic and study strong comultiplication modules and comultiplication rings. In particular,we will show that every faithful weak comultiplication module having a maximal submoduleover a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplicati...
متن کاملConstructing Kolyvagin Classes: Kolyvagin’s Conjecture and Nontrivial Elements in the Shafarevich-Tate Group
The standard references for this section are [Gro91], [Kol90] and [McC91]. Let E be an elliptic curve over Q of conductor N . Let K = Q( √ −D), where −D is a fundamental discriminant, D #= 3, 4, and all prime factors of N are split in K, i.e. (N) = NN̄ for an ideal N of the ring of integers OK of K with OK/N $ Z/NZ. We call such a discriminant a Heegner discriminant for E/Q. By the modularity th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016